3 research outputs found

    Adaptive Mechanisms to Improve Message Dissemination in Vehicular Networks

    Get PDF
    En el pasado, se han dedicado muchos recursos en construir mejores carreteras y autovías. Con el paso del tiempo, los objetivos fueron cambiando hacia las mejoras de los vehículos, consiguiendo cada vez vehículos más rápidos y con mayor autonomía. Más tarde, con la introducción de la electrónica en el mercado del automóvil, los vehículos fueron equipados con sensores, equipos de comunicaciones, y otros avances tecnológicos que han permitido la aparición de coches más eficientes, seguros y confortables. Las aplicaciones que nos permite el uso de las Redes Vehiculares (VNs) en términos de seguridad y eficiencia son múltiples, lo que justifica la cantidad y recursos de investigación que se están dedicando en los últimos años. En el desarrollo de esta Tesis, los esfuerzos se han centrado en el área de las Vehicular Ad-hoc Networks, una subclase de las Redes Vehiculares que se centra en las comunicaciones entre los vehículos, sin necesidad de que existan elementos de infraestructura. Con la intención de mejorar el proceso de diseminación de mensajes de alerta, imprescindibles para las aplicaciones relacionadas con la seguridad, se ha propuesto un esquema de difusión adaptativo, capaz de seleccionar automáticamente el mecanismo de difusión óptimo en función de la complejidad del mapa y de la densidad actual de vehículos. El principal objetivo es maximizar la efectividad en la difusión de mensajes, reduciendo al máximo el número de mensajes necesarios, evitando o mitigando las tormentas de difusión. Las propuestas actuales en el área de las VANETs, se centran principalmente en analizar escenarios con densidades típicas o promedio. Sin embargo, y debido a las características de este tipo de redes, a menudo se dan situaciones con densidades extremas (altas y bajas). Teniendo en cuenta los problemas que pueden ocasionar en el proceso de diseminación de los mensajes de emergencia, se han propuesto dos nuevos esquemas de difusión para bajas densidades: el \emph{Junction Store and Forward} (JSF) y el \emph{Neighbor Store and Forward} (NSF). Además, para situaciones de alta densidad de vehículos, se ha diseñado el \emph{Nearest Junction Located} (NJL), un esquema de diseminación que reduce notablemente el número de mensajes enviados, sin por ello perder prestaciones. Finalmente, hemos realizado una clasificacion de los esquemas de difusión para VANETs más importantes, analizando las características utilizadas en su diseño. Además hemos realizado una comparación de todos ellos, utilizando el mismo entorno de simulación y los mismos escenarios, permitiendo conocer cuál es el mejor esquema de diseminación a usar en cada momento

    A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions

    Get PDF
    [EN] As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps rising steadily, the chances that these devices get close to each other during their flights also increases, causing concerns regarding potential collisions. This paper proposed the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrated the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 s for each risky situation successfully handled.This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00, and the Universitat Politecnica de Valencia (UPV) under grant number FPI-2017-S1 for the training of PhD researchers.Fabra Collado, FJ.; Zamora-Mero, WJ.; Sangüesa-Escorihuela, JA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2019). A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions. Sensors. 19(10):1-25. https://doi.org/10.3390/s19102404S1251910Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 153, 119293. doi:10.1016/j.techfore.2018.05.004SESAR Joint Undertakinghttps://www.sesarju.eu/Fabra, F., T. Calafate, C., Cano, J.-C., & Manzoni, P. (2018). MBCAP: Mission Based Collision Avoidance Protocol for UAVs. 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA). doi:10.1109/aina.2018.00090Drone Collision Avoidancehttps://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002Liu, Z., & Foina, A. G. (2016). Feature article: an autonomous quadrotor avoiding a helicopter in low-altitude flights. IEEE Aerospace and Electronic Systems Magazine, 31(9), 30-39. doi:10.1109/maes.2016.150131Xiang, J., Liu, Y., & Luo, Z. (2016). Flight safety measurements of UAVs in congested airspace. Chinese Journal of Aeronautics, 29(5), 1355-1366. doi:10.1016/j.cja.2016.08.017Lin, Q., Wang, X., & Wang, Y. (2018). Cooperative Formation and Obstacle Avoidance Algorithm for Multi-UAV System in 3D Environment. 2018 37th Chinese Control Conference (CCC). doi:10.23919/chicc.2018.8483113Zhou, X., Yu, X., & Peng, X. (2019). UAV Collision Avoidance Based on Varying Cells Strategy. IEEE Transactions on Aerospace and Electronic Systems, 55(4), 1743-1755. doi:10.1109/taes.2018.2875556Kim, H., & Ben-Othman, J. (2018). A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT. IEEE Communications Letters, 22(12), 2587-2590. doi:10.1109/lcomm.2018.2875477Wang, M., Voos, H., & Su, D. (2018). Robust Online Obstacle Detection and Tracking for Collision-Free Navigation of Multirotor UAVs in Complex Environments. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). doi:10.1109/icarcv.2018.8581330Ma, L. (2018). Cooperative Target Tracking using a Fleet of UAVs with Collision and Obstacle Avoidance. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). doi:10.1109/icstcc.2018.8540717Chen, P.-H., & Lee, C.-Y. (2018). UAVNet: An Efficient Obstacel Detection Model for UAV with Autonomous Flight. 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). doi:10.1109/icoias.2018.8494201Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009Accurate and real-time multi-UAV simulationhttps://bitbucket.org/frafabco/ardusim/src/master/MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/startGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. doi:10.1016/j.rse.2017.06.031NS-2 The Network Simulatorhttp://nsnam.sourceforge.net/wiki/index.php/Main_PageOMNeT++ Discrete Event Simulatorhttps://omnetpp.org/Quaternium, Home of the Longest Flight Time Hybrid Dronehttp://www.quaternium.com/Gauss-Markov Mobilityhttps://doc.omnetpp.org/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.htmlFerrera, E., Alcántara, A., Capitán, J., Castaño, A., Marrón, P., & Ollero, A. (2018). Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments. Sensors, 18(12), 4101. doi:10.3390/s1812410

    A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs

    Get PDF
    © 2016 Julio A. Sanguesa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Vehicle-to-vehicle (V2V) communications also known as vehicular ad hoc networks (VANETs) allow vehicles to cooperate to increase driving efficiency and safety on the roads. In particular, they are forecasted as one of the key technologies to increase traffic safety by providing useful traffic services. In this scope, vehicle-to-vehicle dissemination of warning messages to alert nearby vehicles is one of the most significant and representative solutions. The main goal of the different dissemination strategies available is to reduce the message delivery latency of such information while ensuring the correct reception of warning messages in the vehicle's neighborhood as soon as a dangerous situation occurs. Despite the fact that several dissemination schemes have been proposed so far, their evaluation has been done under different conditions, using different simulators, making it difficult to determine the optimal dissemination scheme for each particular scenario. In this paper, besides reviewing the most relevant broadcast dissemination schemes available in the recent literature, we also provide a fair comparative analysis by evaluating them under the same environmental conditions, focusing on the same metrics, and using the same simulation platform. Overall, we provide researchers with a clear guideline of the benefits and drawbacks associated with each scheme.This work was partially supported by the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, and by the Government of Aragon and the European Social Fund (T91 Research Group).Sangüesa-Escorihuela, JA.; Fogue, M.; Garrido, P.; Martinez Dominguez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM. (2016). A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs. Mobile Information Systems. 2016:1-18. https://doi.org/10.1155/2016/8714142S118201
    corecore